Xenoprof overview & Networking Performance Analysis
J. Renato Santos
G. (John) Janakiraman
Yoshio Turner
Aravind Menon
HP Labs
Xen Summit January 17-18, 2006
Background: OProfile Overview

- **Statistical profiling of applications on Linux**
 - Contribution of different routines in user/kernel space to execution cost
 - Profile various hardware events (clock cycles, instructions, cache misses, etc.)
 - Use NMI to sample code execution on perf. counter overflow

Example output

<table>
<thead>
<tr>
<th>Function</th>
<th>%Instructions</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1000_intr</td>
<td>13.32</td>
<td>e1000</td>
</tr>
<tr>
<td>tcp_v4_rcv</td>
<td>8.23</td>
<td>vmlinux</td>
</tr>
<tr>
<td>main</td>
<td>5.47</td>
<td>rcv22</td>
</tr>
</tbody>
</table>
Xenoprof: Enabling System Wide Profiling in Xen

- Xenoprof: Extends Xen with performance event interface
 - Map performance events to specific h/w perf counters
 - Hypercalls for setup, start, stop event sampling
 - System wide profiling (no perf. counter virtualization yet)

- OProfile: Extended with Xen specific driver
• PC samples collected in Xen
 – Required to profile Xen code
• PC samples stored in shared buffer
• Domain notified via virtual interrupt
• Domain interprets samples obtained from shared buffer
 – Memory map of binary images is known only by the domain
Domain roles in a profiling session

- **Initiator** domain: (currently only dom0)
 - Coordinates profiling session
 - Defines profiling session setup (performance events, sampling period, profiled domain, roles of each domain, etc)
- **Active** domain:
 - A domain running OProfile
 - Interprets its own PC samples
- **Passive** domain: (not supported yet)
 - A domain not running OProfile (i.e. it doesn’t interpret PC samples)
 - PC samples interpreted by other domain (initiator)
 - Coarse profiling for kernel/user level (no module/function information)
- **Unmonitored** domain
 - Domain ignored in profiling session (i.e. samples discarded)
Running OProfile in multiple domains

In coordinator domain (dom0):

- `pcontrol --reset` # clean previous run samples
- `opcontrol --start-daemon` # setup session
  ```
  --active-domains=0,3,7
  --event=GLOBAL_POWER_EVENTS:1000000:1:1:1
  --vmlinux=/boot/vmlinux-syms-2.6.12.6-xen0
  --xen=/bootxen-syms-3.0.0
  ```
- `opcontrol –start` # start profiling
- `opcontrol –stop` # stop profiling
- `opcontrol –deinit` # stop OProfile daemon and remove OProfile module

> pcontrol --reset # clean previous run samples
> opcontrol --start \ # indicate domain is ready
  ```
  --vmlinux=/boot/vmlinux-syms-2.6.12.6-xenU
  --xen=/boot/xen-syms-3.0.0
  ```

In other active domains (eg. 3,7):

- `pcontrol --reset` # clean previous run samples
- `opcontrol --start` # setup session

Profiling duration

- `opcontrol –start` # start profiling
- `opcontrol –stop` # stop profiling
- `opcontrol –deinit` # stop OProfile daemon and remove OProfile module

For OProfile report:
- Need to concatenate individual reports in each domain
Status

• Currently supports X86 (P6 family and Pentium 4) only
• Xenoprof code include modification in 3 components
 – Xen, Kernel, OProfile user level tools
• Xen and Kernel components to be included in the Xen public repository, sometime soon …
• OProfile maintainer (John Levon) has accepted user level modifications into OProfile. (will be available in the next public release of OProfile – no date defined yet).
Missing features – next steps

• Port to additional CPU models
 – Currently supported : x86_32 (P6 family and Pentium4)
 • Need support for: AMD, x86_64 (future: IA64, PPC)

• Support for passive domains

• Add Performance Counter virtualization into Xen
 – Would enable individual domain profiling

• Enable HW counter access from domains
 – New domain privilege for accessing HW counter needed
 – Would enable use of additional tools

• Support for call-trace
Part II

Networking Performance Analysis
Network Performance Evaluation in Xen

• Experiment setup
 • Machine: HP Proliant DL580
 – 4-way P4 (Xeon),
 – 2.8 GHz,
 – 4 GB RAM (256MB/dom)
 – E1000 gigabit network card

• benchmark
 – Single TCP connection (Receive side)
 – Large MTU-size packets
 – max throughput (930 Mb/s)
Dom0 has good performance for I/O

Total # samples in experiment (relative to Xen)

- Dom0 has performance similar to Linux
 - ~5% additional overhead
 - Overhead mostly due to additional instructions in Xen
 - TLB misses significantly higher in Xen but negligible effect on performance
I/O in domU has high overhead

- Network I/O has significant CPU overhead in driver domain
- Need to optimize Xen I/O performance
Guidelines for Network I/O Optimization

code profile for dom0 (with application in domU)

<table>
<thead>
<tr>
<th>Kernel (dom0)</th>
<th>Xen (in dom0 context)</th>
</tr>
</thead>
<tbody>
<tr>
<td>samples</td>
<td>%</td>
</tr>
<tr>
<td>15020</td>
<td>11.8946</td>
</tr>
<tr>
<td>12670</td>
<td>10.0337</td>
</tr>
<tr>
<td>9118</td>
<td>7.2207</td>
</tr>
<tr>
<td>6958</td>
<td>5.5101</td>
</tr>
<tr>
<td>6003</td>
<td>4.7539</td>
</tr>
<tr>
<td>4646</td>
<td>3.6794</td>
</tr>
<tr>
<td>4209</td>
<td>3.3331</td>
</tr>
<tr>
<td>3959</td>
<td>3.1352</td>
</tr>
<tr>
<td>3544</td>
<td>2.8071</td>
</tr>
<tr>
<td>2840</td>
<td>2.2490</td>
</tr>
<tr>
<td>3367</td>
<td>2.6675</td>
</tr>
<tr>
<td>72334</td>
<td>57.2843</td>
</tr>
</tbody>
</table>

- Try to optimize high cost functions such as `find_domain_by_id`
- Bridge/net/ethernet code (~28%) responsible for approx half of kernel time
 - Should try to optimize bridge code (or use an alternative solution)
- memory management in Xen (mm/grant/page_alloc) also has high cost (21%)
 - Should try to optimize page flipping & page ownership exchange
Alternatives for reducing I/O overhead

- Enable direct I/O from domains running application
 - Each device is dedicated to one domain (not ideal)
 - Security issue: DMA can violate domain memory boundaries (until IOMMU is available)

- Virtualization support on devices
 (sharing devices among domains with direct I/O)
 - Need adoption by device vendors
 - Industry is moving in this direction - PCI Express working on a standard extension for I/O virtualization