Security for the Xen Hypervisor – Status Quo & Perspective 2006

Reiner Sailer

Xen Summit 2006
1. Access Control Module

2. Virtual Trusted Platform Module
Hypervisor Security Architecture / ACM

Major Goal:
Create distributed confined operating environments
- Allow controlled sharing between domains, building “coalitions” of domains and virtual peripherals

Why: To better protect distributed services / workloads

How: Xen/ACM confinement serving as a
- Universal foundation for OS security
- Safety net if OS security fails or is missing
Policy Support Status Quo

- **Simple Type Enforcement Policy**
 - Controls which domains can share
 [Coalitions for Domains]

- **Chinese Wall Policy**
 - Controls which domains can run simultaneously on the same system
 [Approximated “Air-Gap” between Domains]
Layers of Isolation and Sharing

- **OS/MLS**: (bridges coalitions)
- **sHype**: (controls sharing)
- **Xen VMM**: (virtualizes + isolates)

Granularity:
- ≤ Files
- Virt. Res.
- HW

Example systems:
- **Data Base**
- **Payroll**

Coalition:
- Human Resources
- Payroll

Granularity levels:
- Files
- Virtual Resources
- Hardware
Simple Type Enforcement Policy (STE)

Example: 3 Coalitions – Yellow, Blue, Green
Sharing of HW Devices Through Isolated Virtual Devices

- Create isolated virtual devices to prevent over-provisioning
- Xen/sHype controls which VM can connect to MAC VM
- Xen/sHype defers MAC enforcement to MAC-OS
- Xen/sHype can provide access control decisions

sHype coalition isolation no stronger than MAC OS Isolation
Perspective 2006 – Access Control Module

- Encourage Security Community to Build on top of Xen/ACM Policy (e.g., SELinux/MLS)
- Extending Access Control Enforcement onto virtual peripheral devices (VBD, V-NIF)
- Extending Access Control across multiple platforms
Challenges – Security Adds to Trend of Refactoring Dom0

- **Refactoring of Domain0 Essential**
 - It’s too large (LOC) → no (strong) guarantees possible
 - It’s too powerful → no confinement in case of error
 - It’s ever changing → very hard to stay non-intrusive

- **Driver aka Device aka MAC Domains**
 - Small domains own hardware and create isolated virtual peripherals that can be assigned to different coalitions (assumes IO-MMU)
1. Access Control Module

2. Virtual Trusted Platform Module
Virtual TPM Support in Xen
Perspective – Virtual TPM

- **vTPM drivers in close co-operation with Intel**
 - Migration support for domains with vTPM

- **Intel driving authenticated boot**
 - Minimal startup partition to initialize the access control and vTPM environment
 - Measuring Xen components

- **Co-operation with AMD on dynamic root of trust**

- **Attestation support for domains (IMA)**
Summary

- Policy and enforcement in Xen is stable
- Labeling and policy enforcement for virtual VM resources continuing (network + VBD)
- Extending sHype across multiple platforms continuing
- vTPM support expanding (dynamic root of trust)
- Security Requirements add to the Trend of Refactoring Domain0
Available Xen/ACM Security Tools

- Policy Management Interface (Web-based)
- Command line policy translation tools (xml policies → Xen/ACM binary policies)
- Labeling tools (setlabel, getlabel)

- IBM LTC: Tom Lendacky
- IBM Research: Stefan Berger, Reiner Sailer