
Scheduler development update

George W. Dunlap
Citrix Systems R&D Ltd, UK
george.dunlap@eu.citrix.com

Abstract
The Credit Scheduler has served Xen well for many years now.
However, recent changes in the computing field have shown some
of its weaknesses. These include the advent of client hypervisors,
the rise in the number of available cores, and the increasing im-
portance of server power management. This talk will discuss chal-
lenges for the new scheduler, as well as goals and designs. We will
then cover the current status of development, as well as future work
and plans.

1. Introduction
The Credit Scheduler was added to the Xen tree in May of 2006.
Since then, several changes have exposed weaknesses of the credit
scheduler. These include the following: Client hypervisors, an in-
crease in the number of cores, and the increased importance of
power management for servers.

Client hypervisors, such as XenClient, will make workloads
such as video and audio common in VMs running on Xen. Audio,
and often video, do not require a great amount of CPU time; but
they are very sensitive to latency. The Credit Scheduler’s algorithm
for handling latency-sensitive applications works tolerably well for
some latency-sensitive workloads, like network. Unfortunately, for
audio, its performance is unacceptable.

When the credit scheduler was written, systems with 16 cores
were extreme; systems with 8 cores were still high-end. Now high-
end server systems have 24 cores (4 sockets, 6 cores each), and may
soon have 4 sockets, 8 cores each, and each core with 2 threads:
64 total schedulable entities. The load balancing algorithm for the
credit scheduler doesn’t scale well to this number of cores.

This document will discuss my work on a new general-purpose
scheduler designed to replace the Credit Scheduler. Section 2 dis-
cusses design inputs: target workloads and systems, goals for the
scheduler, the target interface, and some principles for what an
ideal scheduler would do in common situations. Section 3 briefly
describe some insights gained on a whole class of scheduling algo-
rithms. Section 4 then describes one of the main algorithmic weak-
nesses of the Credit Scheduler with respect to latency-sensitive
workloads. Section 5 then discusses the credit algorithm of the cur-
rent working prototype. Finally, section 6 discusses the work still
to be done for the credit algorithm and load balancing.

2. Design
2.1 Targets
There are three general use cases we wish to consider. The first is
traditional server consolidation. We wish to tune performance for a
system with 2 sockets, 6 cores per socket, 2 threads per core, giving
us 24 logical CPUs. We will need to consider systems at least up
to 4 sockets, 8 cores per socket, 2 threads per core, for a total of
64 logical CPUs. Servers will ideally be at around 80% utilization;

but we should function well for up to 200% utilization. VMs will
typically have a high number of virtual CPUs.

The second use case we want to consider is a virtual desktop
server. Virtual desktop VMs will typically have only 1-2 virtual
CPUs. We want to target our scheduler to work well for a server
that has 8 VCPUs per physical core.

The last type of system we need to consider is a client system,
such as XenClient. Such a system will typically be single socket, 2
cores, possibly with SMT. It will have 3-4 VMs including domain
0, and will be using PCI pass-through for video and audio. In
addition to typical desktop workloads, audio and video will be
important workloads.

2.2 Goals
There are several design goals we want to keep in mind. First is
fairness: the ability of a VM to get its “fair share” of CPU. Fair
share is defined by its scheduling parameters, such as weight, cap,
and reservation (discussed below).

Fair share is more than simply allowing a VM to run for a given
amount of time within some timeframe. For some workloads, like
network data transfer, each bit of work (such as sending packets
or ACKs) creates more work in the future. Not allowing a network
workload to run in a timely manner thus prevents it from using its
“fair share” of CPU time when it is made available.

Another goal is to work well for latency-sensitive workloads.
Ideally, if a latency-sensitive workload uses less than its fair share
of CPU, it should run as well when the system is loaded as it does
when the system is idle. If it would use more than its fair share,
then the performance should degrade as gracefully as possible.

Another aspect to consider is hyperthreads. A VCPU running on
a core by itself will get a higher throughput than a VCPU sharing
a core with another thread. Ideally, the scheduler should take this
into account when determining the “fair share”.

Finally, powering down cores or sockets into deeper sleep states
can save power for relatively idle systems, while still allowing a
system to perform at full capacity when needed. Our scheduler
needs to either implement this power-vs-performance trade-off, or
provide support for another system to do so.

2.3 Interface
The target interface we wish to implement is similar to the Credit
scheduler’s interface. Like the Credit Scheduler, each VM will have
a weight and a cap. In addition, each VM will have a reservation.

In the absence of cap or reservation, each VM will get CPU
time relative to other CPUs according to its weight. If some VMs
are using less than their “fair share” of CPU time, the remaining
time will be divided among other VMs according to their weight.

A cap will put an upper limit on how much CPU time a VM
can get, even if there is more processing speed available. This is
expressed as a percentage of one CPU.

A reservation is a minimum amount of CPU time a VM can
get, expressed as a percentage of one CPU. A VM will get either



its “fair share” according to weight, or its reservation, whichever is
greater. The tools must guarantee that the sum of all reservations in
the system does not exceed the amount of CPU available.

2.4 Principles
This section contains some conventional wisdom and personal ob-
servation in the form of principles in which to evaluate the design
of a scheduler.

The ideal treatment for computationally intensive tasks which
are not latency-sensitive is to have long time-slices. This allows
them to most effectively use the processor cache. Switching more
frequently can reduce cache effectiveness; but experiments have
shown a “floor” such that if you switch often enough, one VCPU
doesn’t have enough time to flush the cache before the other one
runs. In that case, the two workloads are effectively sharing the
cache.

Note that this principle of giving computationally intensive
tasks long time-slices is still true if multiple cores are sharing an
L2 cache. If you have two cores sharing a cache, and each one
has a workload running for a long times-slice, the two workloads
will share the cache. But if you have two cores, each switching
quickly between two workloads, then all four workloads will share
the cache.

Ideal treatment for latency-sensitive tasks which are using less
than their fair share is to run them as soon as possible. Low-running
latency-sensitive tasks rarely use much cache.

When a latency-sensitive task with a regular wake/sleep cycle
would use more than its fair share, the ideal would be to lengthen
the sleep cycle long enough to make that its fair share. For example,
if a latency-sensitive task runs at a 50% duty cycle (run for 1ms,
sleep for 1ms), and its fair share is only 33%, the ideal thing to
do would be to let it run for 1ms, sleep for 1ms, and then wait
for 1ms. This should allow most latency-sensitive workloads to
degrade gracefully as the amount of CPU time available to them
decreases.

3. Some theory
In the process of exploring alternate algorithms, I discovered that
there are a large number of algorithms that are essentially transfor-
mations of each other. The same basic mechanism and problems
must be solved by them all.

This class of algorithms can be defined thus:

• Each schedulable entity (VCPU in this case) has a value associ-
ated with it. (In the Credit Scheduler, this is credit; in the BVT
scheduler for example, this is “virtual time”.)

• This value is modified as a function of time spent running. It
may also be modified with time spent blocked or waiting on a
runqueue, and with real time passing.

The key problem to solve with any algorithm of this type is how
to deal with VMs that don’t use their “fair share”. If you add credit
(or time or whatever) at a constant rate, and some VMs don’t use all
of their CPU time, the values will tend to diverge. VMs which use
all of their time will get more and more “behind”, and VMs which
don’t will get more eand more “ahead”.

I explored several solutions to this problem. The first was to
attempt to guess in advance how much credit a VM might use, and
only give it as much as I thought it would use. Unfortunately, the
only metric I had to do the estimate was how much time the VM
had used. But there are many reason why a VM may not have run
as much as it could have, including not being given enough credits
to begin with.

Another set of options I explored was to change the “earn
rate” and “burn rate” of credit according to how many VCPUs

were currently waiting for the runqueue. Conceptually, this is very
satisfying: the credit “burned” always equals the credit “earned”.

Unfortunately, from a computational perspective this method
is impractical. It’s not uncommon for VCPUs to wake, run for
only a few thousand cycles, and sleep again, only to wake a few
thousand cycles later. Each time a VCPU wakes or sleeps, the rate
of “earning” or “burning” credit changes, meaning that all active
VCPUs need to have their credits updated according to their weight
in proportion to the weight of all other VCPUs currently running.
It’s just not practical.

The most effective way I’ve found of handling divergence is
with a reset event. A reset event, in order to be effective, must
do two things. First, it must discard the extra value accumulated
by those “ahead”; secondly, it must tend to converge back to zero
those who are “behind”. Both the BVT scheduler and the Credit
Scheduler have reset events; I will describe the Credit Scheduler’s
reset event in the next section, and my prototype scheduler’s reset
event in the section following.

4. Credit Scheduler
There are many aspects of the current scheduler which make it less
effective at scheduling latency-sensitive VMs. These include long
time slice (30ms), sorting by priority rather than credit, and the
probabilistic debiting of credit 10ms at a time. Each of these could
be addressed individually. But the key issue is how it deals with the
reset condition.

In order to deal with latency-sensitive workloads the Credit
Scheduler classifies all VCPUs into two categories: active or non-
active.

Active VMs earn credits every 30ms according to their weights,
and burn credits as they run. Active VMs can be in either priority
UNDER, meaning they have positive credit, or OVER, meaning nega-
tive. VCPUs in UNDER will always run ahead of VCPUs in priority
OVER. Scheduling within a priority is round-robin.

Non-active VMs do not earn or consume credits as they run. As
soon as a non-active VM is woken, it is set to priority BOOST, which
allows it to run ahead of any VCPUs in UNDER or OVER.

Movement between the two classifications happens as follows.
If an active VM is not using all of its fair share, it will slowly
accumulate credit. Once it reaches a certain threshold (30ms worth
of credit), it is marked inactive. Its credits are discarded (set to
zero), and the next time it wakes it will be marked BOOST.

A VM is marked active again if it is interrupted by a tick. Tick
interrupts in the Credit Scheduler happen every 10ms. The tick
serves two purposes: to probabilistically debit credit1, and to detect
VCPUs which need to be marked active. The comment from the
tick code of the Credit Scheduler makes the purpose clear: “If the
VCPU is found here, then it’s consuming a non-negligible amount
of CPU resources and should no longer be boosted.”

The problem with this is that probabilistically speaking, every
VCPU, no matter how little CPU it’s using, will eventually be
interrupted by a tick. For example, suppose an audio VM consumes
5% of the CPU while playing MP3s. This means that each time a
tick fires, there’s a 5% chance that the audio VM is running. So we
would expect, on average, the tick to interrupt the audio VM every
20 ticks or so. Since ticks happen every 10ms, we can expect a VM
using only 5% of the CPU to stay in the BOOST priority for 200ms
before switching to being actively accounted.

So any VM which is not using its fair share will flip back
and forth between “active” and “non-active”: When active, it will
accumulate credit until it reaches the credit limit, and be marked
inactive; when inactive, it will eventually be interrupted by a tick

1 This has been changed in the unstable branch after 3.4; credit is now
debitied on every schedule according to how long the VCPU has run.



and marked active. At the point where it is made active again, it
has zero credit, so it will almost always begin by going into OVER,
scheduled behind all other active VMs; even when it goes back into
UNDER, it’s still competing in a round-robin fashion with all VMs
that haven’t used up their credit yet.

5. New scheduler prototype
5.1 Runqueue per L2 cache
The first design change made with the new scheduler is to have
one runqueue per L2 cache2, rather than one runqueue per logical
processor. Having separate runqueues per processor, and migrating
between them, is mainly to prevent unnecessary migration, which
can cause ineffective use of processor caches. Having one per pro-
cessor made sense when each processor had its own large caches.
However, most cores within a socket now share an L2 cache, so
migrating between logical processors on the same core should have
little effect on cache efficiency. (Conventional wisdom is that L1
caches are so small that there will be nothing still in the cache af-
ter even a short context switch away. They are therefore not worth
considering.)

Sharing a runqueue within a socket will give near-perfect load
balancing within that socket. It has also allowed me to test the new
credit algorithm on single-socket boxes without having to worry
about load-balancing at this point.

5.2 New credit algorithm
The new credit algorithm has the following basic properties. All
VCPUs start with the same default amount of credit. Credit is
burned at different rates, based on the weight; the VM with the
highest weight burns credit at the default rate, and VMs with lower
weight burn credit faster. When VMs wake up, they are inserted
into the runqueue sorted by weight.

The reset condition happens when the next VCPU in the run-
queue has non-positive credits (i.e., ¡= 0). At that point, all VCPUs
are re-set to the initial default amount of credit. (This is actually a
simplification; more detail is explained below.)

Resetting the credits this way controls the rate at which credit
is introduced into the system. When a single CPU-intensive task is
running alone, it will be given credits much more often than when
it is competing for CPU with other tasks. A VMs “fair share” is
determined by how long it takes to burn through its credits. If a VM
is using less than its fair share, then it will always have a higher
credit than those using their full share. Whenever it wakes up, it
will be scheduled immediately. All VMs using their full share will
naturally divide, by weight, the CPU time that is not used by VMs
not using their fair share.

If a latency-sensitive VM is using more than its fair share, then
it will tend to cycle through two modes. It will run whenever it
wants to until its credit is low enough that it won’t run immediately
upon waking. Then other VMs will run for a period of time, until
they have burned enough credit so that the latency-sensitive VM
has enough credit to run when it wants. As long as we make this
“recharge” phase short enough, it should have little impact on the
performance.

6. Future work
There is still a great deal of work to be done before the new
scheduler is ready for production use.

2 I say per L2 rather than per socket because some chip designs may have
multiple L2s per socket, with some number of cores sharing each.

6.1 Credit algorithm
To begin with, the credit algorithm needs some more tweaking. As
mentioned above, a latency-sensitive VCPU which is using more
than its fair share will alternate between run-on-demand and a
“recharge” period. More work is needed to determine the best way
to implement this “recharge” period.

Another issue comes when a single VM has more than one
workload, one of which is CPU-bound, and another of which is
latency-sensitive. For instance, a XenClient user might be listening
to music in his personal VM, while unbeknownst to him a flash
advertisement running in Firefox is consuming 100% of the CPU.
The challenge is to allow the latency-sensitive portion of the work-
load to run in a timely manner, while not allowing the VM to use
more than its fair share.

The key observation is that latency-sensitive components of
workloads, such as audio and network packet handling, is gener-
ally handled by the operating system in interrupt handlers. If a VM
which has an outstanding interrupt is allowed to run, it will proba-
bly handle the latency-sensitive portion of its workload first. So an
idea I plan on testing is to give VMs a 1ms boost when the VM has
an outstanding interrupt.

Another issue is the following. As we said in section 2.4, CPU-
bound VMs should be allowed to run for long time-slices, if pos-
sible, to maximize cache efficiency. If two CPU-bound processes
are alternating, this is fairly easy: just give each a decently long
time-slice.

However, if there is a third VM which runs for short periods
of time but very frequently, it will effectively shorten the times-
lice of the other two, so that they alternate much faster than they
would otherwise. This is because the long-running VCPUs’ credits
are updated and they are sorted in the runqueue every time the third
VM wakes up, rather than only after the full scheduling quantum
has run.

A similar problem happens when a VM makes several short
calls out to QEMU. Instead of running for its full quanta, it runs
for a short time, and does a quick (10k cycle) yield to QEMU
(either in domain 0 or in a stub domain). Since it has run, its credit
is debited and it is inserted in the queue, possibly behind another
VM. It would be ideal to allow the same VM to continue running,
to allow it to more effectively use the cache.

Xia Yubin introduced a technique called preempt-back, in which
a VM which was preempted to do a short task is allowed to run
again immediately, instead of being put back in the runqueue in its
place. Doing this effectively will require some more research and
experimentation.

Finally, caps and reservations need to be implemented.

6.2 Load balancing
Having a single runqueue per L2 makes lower-level load balancing
much simpler. Most single-socket systems will not need to load
balance at all. What remains is to load balance across sockets. To
do this I plan on borrowing ideas from Linux load-balancing.

The Linux scheduler divides is logical CPUs hierarchically into
domains. Domains have different levels: e.g., there may be multiple
threads in a core, multiple cores in a socket, and multiple sockets in
a NUMA node. At each domain level, a task periodically balances
work between those levels. Balancing at lower levels is done more
frequently than at higher levels. To do load balancing, each run-
queue keeps track of a measure of CPU load for different lengths
of time in the past; this information is aggregated up to the level at
which balancing is being done.

I plan on implementing something similar for Xen, but starting
at the L2 runqueue level. As always, measurement and experimen-
tation will be needed.


