About Neocleus

• We are a Software Company
 – in stealth mode

• Not a Virtualization company per se

• Parts of what we do is Open Source
Desktop Virtualization

HVM requirements in a Desktop environment are different

– There is an end-user
– Dynamic configuration (e.g. network)
– Unknown hardware characteristics
– P2V is a must
Pass-through Motivation

• Critical Success Factors
 – Performance
 – Security
 – Usability
 – Hardware Compatibility
Pass-Through Challenges

- Address Translation
- Security
- Resource Management
- ACPI
- Integrated Devices (Chipsets)
- Hardware ROMs (VGABIOS, Etherboot…)

Neocleus Proprietary
Outline

• Basic Concepts
• Memory Layout
• PCI Configuration
• ACPI et al.
• HW Resource Routing
• Development Status
• Hardware Devices Categorization
 – Real vs. Emulated
 – Dedicated vs. Dynamically Allocated
 – Shared vs. Non-Shared
• Supporting IOMMU
• Supporting Non-IOMMU Configurations
 – This is what we have today
 – 100s of millions of computers that should be supported
Challenge: Address Translation

• Target: Non-IOMMU Systems
• Solution: 1:1 Memory Layout (NativeDom)
 – pfn == mfn
 – Motivation
 • DMA
 – Implementation
 • E820 Refactoring
 • Protecting Memory
Pseudo Physical Memory

2GB

1:1 Correlation

Reserved

Reserved

Reserved

ROMs

1:1 Correlation

Reserved

Reserved

Reserved

ROMs

Duplicated ROMs

Dom0

Xen

Machine Memory

Protected by the Hypervisor
• E820 Map

(XEN) NEO: Initializing...
(XEN) NEO: Machine Available RAM: 2120036352
(XEN) NEO: RAM Available for Xen: 254406656
(XEN) NEO: Dom0 E820 After manipulations:
(XEN) 0000000000000000 - 000000000008f000 (usable)
(XEN) 000000000008f000 - 00000000000a0000 (reserved)
(XEN) 00000000000a0000 - 0000000000100000 (reserved)
(XEN) 0000000000100000 - 0000000007400000 (usable)
(XEN) 0000000007400000 - 000000006f300000 (1:1)
...
(XEN) 0000000007e64f000 - 0000000007e6a5000 (ACPI NVS)
(XEN) 0000000007e6a5000 - 0000000007e6aa000 (ACPI data)
...
 PCI Configuration

• 0xCF8 / 0xCFC Trapping
 – Allowing HVM access to the real PCI config space
 – Exposing the PCI configuration space as a composition of real and emulated devices

• Hiding Certain Real Devices

• Resource Balancing
 – BAR emulation – detecting changes

• PCI-PCI Bridges
 – Fake devices
- ACPI – Provide configuration for the system
- PT-Devices might need ACPI info.
- Providing a “smart” ACPI world view for the HVM
- Applying logic when parsing
 - Expose
 - Hide
 - Manipulate
 - Add new tables/routines etc…
Hardware Resource Routing

- Letting the native driver drive the real hardware
- Resources: PIO/MMIO/Interrupts
- PIO and MMIO is trivial
- Interrupts
 - Assert when an interrupt occurs
 - De-Assert when the corresponding bit in the IRR is low.
- Update Mapping Event
 - Updating access functions
The Big Picture

Etay Bogner
Desktop Hypervisor Framework ("DHF")

• Why?
 – Well, only one Hypervisor can be installed…

• Requires a Plug-in framework for 3rd party ISVs
 – Define APIs

• Our offering: build such a framework for existing Hypervisors
 – As an Open Source project

Enabling 3rd party ISVs (such as ourselves), to build desktop SoftAppliances
Desktop Hypervisor Schematics

(Open Source)

- HAL
- Peripherals
- Network
- Storage
- Plug-in Mgmt

Core Hypervisor
(Open or Closed Source)

Desktop Hypervisor

Third-Party Plug-ins

UI API
HW API
Data API
Call for Action

- Looking for Cooperation/Collaboration
 - 3rd Party ISVs like Neocleus
- Please contact us at “DHF at neocleus.com”
 - “Guy at neocleus.com”
 - “Etay at neocleus.com”
Thank You