Towards Enterprise-level Security with Xen
-- sHype Access Control Module (ACM)

Reiner Sailer, Ronald Perez
Stefan Berger, Ramón Cáceres, Leendert van Doorn
IBM T. J. Watson Research Center, NY
Major Goal for a Secure Hypervisor

sHype = Distributed Workload Protection across Workload Balancing and Virtual I/O

Benefits matching Customer / User requirements
- Universal protection guarantees across machines
- Minimal or no performance overhead

How-to achieve those requirements
- Simple, platform-independent protection statements (Policy)
- Efficient remote property-attestation
- Finer-grained controls layered on top (VM/OS level)
- Non-intrusive, easy to maintain in “Internet-speed”
Agenda

Status Quo

- sHype Access Control Module Status
- Security Management + vTPM Status

Outlook (Discussion)

- Long-term Security Architecture for Xen

sHype/Xen Demonstration (Optional)

- Create and deploy sHype/Xen workload protection in 5 min
Secure Hypervisor Architecture (sHype)

- Flexible framework: Supports Multiple Policies
- Access Control Module Implements Policy Model
- Hypervisor Security Hooks
 - mediate inter-VM communication
 - interact with ACM for access decision
- Implemented for Xen, PHYP, rHype in various stages

sHype-Paper [ACSAC2005]
sHype: From VM to Workload Protection

Value-added Services

- Quarantining VMs
- Layering OS + App. Security

Human Resources

Payroll

Granularity

Users/Data

WL

VM

Xen VMM

(virtualizes + isolates)

sHype

(controls sharing)

– Quarantining VMs
– Layering OS + App. Security
sHype/ACM Overview (User Guide Chapter 10)

Configure/Build sHype/ACM
Section 10.2.1

Xen + ACM installed

Create Policy
Section 10.2.2

XML Policy File
Section 10.3

Deploy Policy
Section 10.2.3

Map Policy File

Binary Policy File

Label Domains + Resources
Section 10.2.4/5

Xen + ACM + Policy running

sHype/Xen Workload Protection Active
EZ Policy Management

Create policies: xensec_ezPolicy

Refine policies: xensec_gen
sHype/ACM Overview (User Guide Chapter 10)
Translating & Loading Policies

xm makepolicy example.chwall_ste.test-wld

Policy root: /etc/xen/acm-security/policies

Policy files:
 example/chwall_ste/test-wld-security_policy.xml
 example/chwall_ste/test-wld.map
 example/chwall_ste/test-wld.bin

xm loadpolicy example.chwall_ste.test-wld
xm cfgbootpolicy example.chwall_ste.test-wld
sHype/ACM Overview (User Guide Chapter 10)

1. **Configure/Build sHype/ACM**
 - Section 10.2.1

2. **Xen + ACM installed**

3. **Create Policy**
 - Section 10.2.2

4. **XML Policy File**
 - Section 10.3

5. **Deploy Policy**
 - Section 10.2.3

6. **Map Policy File**
7. **Binary Policy File**

8. **Label Domains + Resources**
 - Section 10.2.4/5

9. **Xen + ACM + Policy running**

10. **sHype/Xen Workload Protection Active**
Labeling Domains

#xm addlabel Avis.HR dom avis_hr.xm

kernel = "/boot/vmlinuz-2.6.16.13-xen"
ramdisk="/boot/avis_hr_ramdisk.img"
memory = 164
name = "avisHR"
vif = [' ']
dhcp = "dhcp"
disk = ['phy:sda3,sda3,w']

#####SHYPE-Labeling#####
access_control =
 ['label=Avis.HR,
 policy=example.chwall_ste.test-wld']
Labeling Resources

```
#xm addlabel Avis.HR res phy:sda3
```

```python
resources = {
    'file:/xen/cocacola.swap': ('example.chwall_ste.test-wld', 'CocaCola'),
    'phy:/dev/sda4': ('example.chwall_ste.test-wld', 'CocaCola '),
    'phy:/dev/sda3': ('example.chwall_ste.test-wld', 'Avis.HR'),
}
```
sHype/ACM Overview (User Guide Chapter 10)

Configure/Build sHype/ACM
Section 10.2.1

Xen + ACM installed

Create Policy
Section 10.2.2

XML Policy File
Section 10.3

Deploy Policy
Section 10.2.3

Map Policy File

Binary Policy File

Label Domains + Resources
Section 10.2.4/5

Xen + ACM + Policy running

sHype/Xen Workload Protection Active
sHype Distributed Workload Protection I: Simple Type Enforcement Policy (STE)
sHype Distributed Workload Protection II: Policy Enforcement on Shared Resources

- **Dom 1**
- **Dom 2**
- **Dom 3**
- **Dom 4**

VIO Domain

- `hda1`
- `hda2`
- `hda3`

ACM

- `xmc create hook`
- `xmc attach hook`

- `acm_getdecision(res_label, domain_id)`

Xen / sHype
sHype Distributed Workload Protection III: Policy Enforcement on Local Network Traffic

Network Domain

Dom 1
vif1.0

Dom 2
vif2.0

Dom 3
vif3.0

Dom 4
vif4.0

acm_getdecision(at vif-up)

Xen / sHype

external traffic (p/eth0)

iptables rules between vifs

90 %
sHype Distributed Workload Protection III: Policy Enforcement on Local Network Traffic

Chain FORWARD (policy DROP 24 packets, 6753 bytes)

- ACCEPT PHYSDEV match --physdev-in peth0
- ACCEPT PHYSDEV match --physdev-out peth0
- ACCEPT PHYSDEV match --physdev-in vifX.0 --physdev-out vif0.0
- ACCEPT PHYSDEV match --physdev-in vif0.0 --physdev-out vifX.0
- ACCEPT PHYSDEV match --physdev-in vif3.0 --physdev-out vif1.0
- ACCEPT PHYSDEV match --physdev-in vif1.0 --physdev-out vif3.0

8 rules

90 %
sHype Status Quo

- Xen sHype/ACM User Guide Chapter
- ezPolicy Workload Protection Policy Creation Tool
- Resource Labeling and Enforcement
- IPtables Access Control on Local Network Traffic

What’s Next

- sHype/Xen Performance Evaluation + Optimization
- External Network Traffic + new Xen HW features
- Quarantining VMs, e.g., for problem isolation
CIM-Based Security Management Status Quo

- Policy, domain and resource labels, and vTPM need to be managed
- Xen CIM/API offers management consolidation
- Currently CIM/API does not support sHype/vTPM

What’s Next

- Co-operate with Xen CIM/API group
- Define security extensions (ongoing)
- Enable security extensions in Xen CIM/API
vTPM Status Quo (Collaboration with Intel)

- vTPM Device Integrated With Xen-Linux (hot-plug, drivers)
 - no additional requirements on para-virtualization
- Support For Fully Virtualized Domains
 - Atmel qemu device model (submitted, pending)
- Intel: Support For vTPM Migration

What’s Next

- TCG-BIOS guest support: CRTM, tGrub (ready)
 - vTPM support when booting HVM
 - use vTPM, extend ACPI measurement logs for TPM
- CIM support for vTPM management
Selected Related Work

- IBM Converged Power Hypervisor
- High Assurance Platform (US Gov and vendors)
- Open Trusted Computing (European Framework)
- Intel Collaboration on vTPM
- Data Diode (NRL, Network Pump)
- University Relations w.r.t. sHype/Xen
 Pennsylvania State Univ, Georgia Tech, Carnegie-Mellon Univ, Brown Univ, Worcester Polytechnic Institute, …
Xen Security People @ T. J. Watson

- Stefan Berger – vTPM
- Ramón Cáceres – CIM-API
- Reiner Sailer* – sHype Access Control Module
- Guest: Bryan D. Payne* (Georgia-Tech) Resource Labeling
- Ronald Perez* + Leendert van Doorn

(* .. attending this Xen summit)