Performance Isolation in Xen

Diwaker Gupta (UC San Diego)
Lucy Cherkaeva (HP Labs)
Rob Gardner (HP Labs)
Amin Vahdat (UC San Diego)
Outline

- Background and Motivation
- Controlling aggregate CPU consumption
- QoS in the driver domain
- Configuring scheduler parameters
- Conclusion
Introduction

- VMs provide *fault isolation*. Enterprise customers want *performance isolation*.
- What is performance isolation?
 - Performance of one VM should not impact performance of another VM
 - Related concept: *resource isolation*
 - Resource isolation is *necessary* for performance isolation, but is it *sufficient*?
Resource Isolation

- Common resources: CPU, Disk, Memory, Network
- Spatial (disk, memory) vs. Temporal resources (CPU)
- Partitioning vs. Time sharing
- Quality of Service
 - Availability
 - Cost of access
- CPU is special: now just how much, but also when?
Driver Domains

- Execution container vs. resource principle
 - Resource consumption of a VM may span several driver domains

- Accurate accounting and resource allocation
 - Resource consumption by an IDD on behalf of a VM
General Strategy

- Measure
 - Profiling tools
- Allocate
 - Modifications to the scheduler
- Control
 - Mechanisms to control resource usage

Our work focuses on CPU and network I/O.
Profiling Tools

- **XenMon**
 - Uses trace events – fairly easy to add new metrics in the framework
 - Useful for analyzing schedulers (blocking time, waiting time etc)
 - Metrics *per execution period*

- **Other tools**
 - libxenstat and XenTop
 - xenoprofile
Problem: Accounting in IDD

● Scenario
 ● Two enterprise customers: CPU intensive workload and interrupt driven workload (web server)
 ● Given equal shares, do they really get equal shares?

● Example
 ● Single CPU system, SEDF, non work-conserving
 ● VM-1: web server, 60%
 ● Dom-0: driver domain, 40%
 ● How to control aggregate CPU consumption?
Aggregate CPU consumption

![Graph showing CPU utilization over requests per second for different domains.]

- Blue line: Domain 1
- Green dashed line: Domain 0 for Domain 1
- Red triangle markers: Domain 1: Combined usage
Problem: Accounting in IDD

- Goal: allocate CPU shares accounting for aggregate CPU consumption
- Steps:
 - Partition CPU consumption in IDD for different VMs
 - Charge this debt back to the VM
- Heuristic for partitioning: CPU overhead is proportional to the amount of I/O
Packet counting in *netback*

CPU overhead is proportional to rate of packets

CPU overhead is independent of size of packets

- CPU overhead is different for send and receive paths
- But send:receive cost is *constant*
SEDF Debt Collector

- Count packets corresponding to each VM
- Compute *weighted* packet count (using the send:receive factor)
- Partition CPU consumed by IDD using weighted packet counts
- Charge *debt* of each VM to its CPU consumption in the scheduler
SEDFF-DC in action

Xen Summit, 2006
Problem: Accounting in IDD

- SEDF-DC addresses problem for SEDF in single processor case
- Idea can be extended to other schedulers (such as Credit)
- Spread debt across multiple execution periods to avoid starvation
- But
 - Debt can still be very high
 - QoS in the driver domain?
Controlling resource consumption in IDD

- Scenario
 - SEDF, dual processor machine, non work-conserving mode
 - Dom-1: Web server, 33% on CPU-2 (serving 10KB files)
 - Dom-2: Web server, 33% on CPU-2 (serving 70KB files)
 - Dom-3: File transfer, 33% on CPU-2
 - Dom-0: 60% on CPU-1

- Goal: file transfer in VM-3 should not affect web servers in VM-1 and VM-2
No QoS in IDD
Controlling resource consumption in IDD

- Problem: No way to control how much CPU each VM consumes in Dom-0
- ShareGuard
 - Periodically monitor CPU usage using XenMon
 - IP tables in Dom-0 turn off traffic for offenders
 - Added similar functionality to netback
- Repeated experiment, with VM-3 restricted to 5% CPU in Dom-0
ShareGuard in action

CPU in Dom-0 for Dom-3 is 4.42% over the run
Isolated Driver Domains

- Are they happening?
- We *need* accurate accounting. But how?
- ShareGuard only works for network I/O. What about disk?
- We’ve tried
 - Memory page exchanges [USENIX 05]
 - Weighted packet counts
 - Instrumentation?
Allocating resources for IDD

- IDD's are critical for I/O performance
- Scheduling parameters have significant impact
- Different schedulers need different tuning
- Example: on a uni-processor machine, for a web server under load, is it better to give more weight to the VM or to Dom-0?
Work Conserving

Xen Summit, 2006
Non work conserving

Xen Summit, 2006
Other challenges

- Separating costs in presence of multiple drivers
- CPU partitioning for other kinds of I/O traffic
- Isolation of low level resources (PCI bus bandwidth, L1/L2 caches etc)
- Choosing and configuring the right scheduler
Conclusion

- Xen doesn’t have good performance isolation
- Mantra: Measure, Allocate, Control
- XenMon, SEDF-DC, ShareGuard are steps in this direction
- More work needed for SMP, non-network I/O, multiple back-ends
- Does the Xen community care about performance isolation?
Thanks!

Questions?
The tale of 3 schedulers

- Three schedulers in less than two years
- Do end users care?
- Schedulers have demonstrated performance problems

Questions
- Which scheduler to use?
- How to configure parameters?
- Should IDDs be treated specially?
Not very sensitive to Dom-0 weights
Higher weight actually performs worse! Lower weight is better