Virtual Storage Ports

James Smart
Emulex Corporation
Virtual Ports - FC

- Virtual Port:
 A unique FC wwpn, which is associated with a particular fabric, has a single N_Port_ID (aka Address or S_ID) assigned to it. Each port will have its own view of attached storage.

- Standard Physical Port:
 - Single WWPN per physical link
 - Assigned a Single Address

- N_Port ID Virtualization (NPIV):
 - Only if Pt2Pt w/ F_Port (no loop support)
 - WWPN for physical link, FLOGI gets Address1
 - WWPN for each NPIV, FDISC gets Address2
Virtual Ports: FC, cont.

- **Virtual Fabrics (VF) – aka VSAN:**
 - Initial FLOGI to request Support
 - Exchange VF_ID’s available
 - Single WWPN per VF; FLOGI per VF
 - All traffic has an 8-byte header which identifies the VF directed to.

- **VF + NPIV:**
 - FLOGI for 1st instance on an VF
 - FDISC for 2nd..N instance on each VF
Why Virtual Ports and XEN?

- Storage doesn’t have performance issues…
- Block Abstraction works fine and is migrate-able…

… It’s about Data Center Management and SAN Monitoring

- Users want visibility into the VM-specific data flows
 - Traffic Analysis; Problem Analysis; Charge-Back
 - Opportunities for QoS in the SAN
- SAN Provisioning, Work Flows, and Expertise preserved
 - Controlled storage visibility: Zoning & LUN Masking to the Dom
 - Visibility moves with the Dom, not the server
- HBA Upgrades and Replacements Seamless
- There are some that want direct FC access in the Dom
VPort Abstraction for DomU’s

- If bound to DomU as a resource
 - I/O path can reflect the Dom
 - SAN visibility and reporting tracks the Dom
 - SAN reconfig only needed if there’s a Dom change

- In Dom0:
 - Takes advantage of all the Blktap, SCSIltap work, etc
 - Single “services” in Dom0 (vs replication in each DomU)
 - Multipathing, LVM
 - Single Toolsets – based on Dom0 OS
 - Automatic DomU Resource Assignment
 - Negatives: device fencing

- In DomU:
 - FC to Dom0 – native SAN view and native OS storage stacks
 - Fencing of devices unnecessary
 - Native tools in the DomU OS
 - Negatives: Migration, IOMMUs, DomU drivers, etc
Emulex Status

- Implemented NPIV in our Linux device driver
 - Available on SourceForge since May 3, 2006
 - Refreshed for 2.6.18 and will push upstream

- Each vport shows up as a new SCSI Host

- Simple utilities to create, delete, query
 - Primitives usable by mgmt tools

- Working with Standards Bodies
 - Consistency in DMTF, SMI-S, SMA-HBA
 - Addressing Grey Areas:
 - Example: Virtual Port Migration if HBA “babbling” on system lockup

- Laying framework for APIs
 - NPIV w/in Linux
Next Steps

- Integrate a NPIV API into Linux
- Integrate support into Xen Domain Creation and Control
 - Allocation of WWPN’s
 - Specifications of VF_ID’s, Roles, Resource Limits, etc
 - Tools to create and manage the Virtual Port

- We are trying to take a wider view:
 - NPIV VPorts are a prelude to other virtual devices
 - PCI-IOV, Virtual Functions, vNIC, etc
 - Common Mgmt Point - interface consistency
 - NPIV raises other issues that need to be addressed system-wise
 - Recognizing what “could” be there
 - Constructing the device and verifying resulting dependencies
 - Creation Policies for HA
 - Introducing resource constraints, QoS policies
 - Fencing of devices for Dom’s
 - Multipathing, LVM, Clustered Dom Access, etc