ACPI support for HVM Guest

Winston Wang

Xen Summit 2006
Goals

• Support 32 bit and 64 bit UP and SMP Guest OS in ACPI mode
 ▪ Installation
 ▪ Boot
 ▪ Shutdown
 ▪ Power Management

• Focus on configuration now; will add Power Management support later on
Virtual Platform Hardware

HVM Guest environment

Guest ACPI Hardware/Firmware Interface implementation overview

ACPI Hardware: emulated by device model for piix4 ACPI bridge/ACPI registers

ACPI BIOS: E820 table ...

ACPI Table:
- FADT: Fixed ACPI Description Table
- DSDT: Differentiated System Description Table
- MADT: Multiple APIC Description Table
- ...
Need PIIX4 ACPI Bridge Model

• Why
 ▪ PIIX4 ACPI bridge supports all ACPI registers required by the ACPI spec
 ▪ It is the most natural extension to the PIIX3 model in QEMU

• We implemented it by
 ▪ Populate the 82371AB PIIX4 PCI ACPI configuration space
 ▪ Register PIIX4 ACPI bridge
 ▪ Setup ACPI bridge basic PCI configuration:
 ▫ Device ID, class ID
 ▪ Defined and register ACPI pm space IO register
 ▪ Accessed run time “reader” and “writer”
ACPI Registers We Implemented

- **PM1a Event Register Block**
 - 32 bit registers: 16 bit PM1 Status register and counter Status register; base port pointed by FADT
 - Required during OS installation, boot, shutdown and power Management.
 - We simplified the implementation by adding support for the ACPI only programming model, i.e. only take care of PM Timer, Power button, RTC

- **PM1a Control Register Block**
 - 16 bit PM1a Control register, base port pointed by FADT
 - Required during OS installation, boot, shutdown and power Management.
 - We implemented SCI and System power state controls to take care of ACPI shut down
ACPI Timer Implementation

- OS need it for profiling and ACPI SCI event
 - 24-bit free running timer at 3.57954 MHz
 - Base port pointed by FADT
 - Required during OS installation, boot and power management

- Zero performance loss when emulating the free running timer
 - An independent timer will cause severe performance loss due to timer frequency
 - We used vm-clock delta to calculate ACPI timer to avoid possible performance loss
 - Will add SCI event generation when we add power management support
HVM ACPI ACPI Table - FADT

Fixed ACPI Description Table (FADT)

• Report ACPI Hardware Register Blocks base address emulate in device model
• SCI interrupt: IRQ 9
• Ownership of ACPI hardware is OS
• Support Processor C state, WBINVD and etc
• Physical address of FACS and DSDT
• Report no support of the following
 ▪ SMI support
 ▪ Legacy S4 support
 ▪ Power Management Event (PME) blocks and General Purpose Event (GPE) blocks
 ▪ Power Button, Sleep button, RTC
Differentiated System Description Table (DSDT)

- **Point to Differentiated Definition Block**
- **HVM platform configuration information details in the form of AML code implementation and configuration**
 - Report current resource setting and platform current reserved
 - Define logical processors
 - Power off support by adding _S5 control method
- **Provide PIC and APIC mode _PRT table**
 - Check for _PIC method input to know the OS operating mode
 - Return PCI Interrupt Routing Table for PIC and APIC mode
 - Based on virtual platform and chipset interrupt routing.
 - Use the device mode IOAPIC emulation information to form the actual interrupt number and interrupt pin
 - Global Interrupt Base of each IOAPIC defines the starting interrupt number
Current Status and Next Step

• Current tested ACPI OS
 - Linux OS when ACPI = on
 - Windows
 - 32 bit and pae mode XP/SP2 UP and SMP
 - Windows 64 bit
 - MS Vista

• Next step
 - Windows installation ACPI mode checking
 - Turn off non ACPI guest firmware information: $PIR, MPS table if guest boot in ACPI mode
 - Cover ACPI HCT test support
 - Clean up wrong ACPI data and NVS reserve range
 - Power Management support
 - S3 and S4
 - Add missing features required for power management